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Abstract 1. Research papers use a variety of methods for evaluating experiments designed to
determine nutritional requirements of poultry. Growth trials result in a set of ordered pairs of data.
Often, point-by-point comparisons are made between treatments using analysis of variance. This
approach ignores that response variables (body weight, feed efficiency, bone ash, etc.) are continuous
rather than discrete. Point-by-point analyses harvest much less than the total amount of information
from the data. Regression models are more effective at gleaning information from data, but the concept
of "requirements" is poorly defined by many regression models.
2. Response data from a study of the lysine requirements of young broilers was used to compare
methods of determining requirements. In this study, multiple range tests were compared with quadratic
polynomials (QP), broken line models with linear (BLL) or quadratic (I3LQ) ascending portions. the
saturation kinetics model (SK) a logistic model (LM) and a compartmental (CM) model.
3. The sum of total residuals squared was used to compare the models. The SK and LM were the best
fit models, followed by the CM, BI.L, BLQ and QP models. A plot of the residuals versus nutrient intake
showed clearly that the BLQ and SK models fitted the data best in the important region where the
ascending portion meets the plateau.
4. The BLQ model clearly defines the technical concept of nutritional requirements as typically
defined by nutritionists. However, the SK, LM and CM models better depict the relationship typically
defined by economists as the ''law of diminishing marginal productivity. The SK model was used to
demonstrate how the law I diminishing marginal productivity can be applied to poultry nutrition, and
how the "most economical feeding level" may replace the concept of "requirements".

INTRODUCTION

The problems in determining the best levels of
essential nutrients in feeds were detailed by
Lerman and Bk (1975). They pointed out two
major obstacles to achieving diets that maximise
profits. First, it is impractical to determine the
nutritional content of every hatch of raw ingre-
dients. Therefore, costly margins of safety must
be included in feed formulations to assure that
minimum nutrient specifications (or "require-
ments") are met. Second, it is difficult to select
realistic curves that relate animal response to

feed composition. Lerman and Bie (1975) demon-
strated the importance of choosing the correct.
response model in achieving maximum profit
formulations.

Animal feeding trials result in ordered pairs
of data (Figure 1). Many different curves that
relate animal response to feed composition can
be fitted to data from animal feeding trials. The
most realistic curve for each se't of data is difficult
to choose because of the variability in the res-
ponses of difterent individuals, or pens of indivi-
duals, fed on the same diet. The data points
appear to be scattered about or around
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Figure 1. Several representations o/ responses to dietary
nutrient level.

a continuum with an ascending portion where
the nutrient in question is limiting some
response, such as growth, carcase composition,
or lean meat yield. When enough of the nutrient
is fed, a "plateau" results, where maximum
(or minimum) performance levels have been
achieved. If excessive concentrations of any
nutrient are fed, the diet becomes inibalanced
or the nutrient is toxic, resulting in decreased
performance (not depicted in Figure 1).

The simplest, although misguided, atialysis
of nutritional response data is just to compare
points using paired 1-tests, orthogonal contrasts,
or multiple-range tests. The requirement is
defined as the lowest concentration of the
nutrient that results in a response that is not
significantly different from the maximum
(or minimum) response at some arbitrarily
chosen level of significance. Such interpretations
always result in conclusions that the requirement
is between two concentrations of the nutrient
that were fed in the experiment. There is no way
to tell exactly what the requirement is, or to tell
the level of confidence in the requirement
estimate. Since there is no function defined,
interpolation between two known points is not
even possible.

Another simple way to analyse nutrient
response data is to fit a polynomial model or
expression, usually a quadratic, to the data. With
quadratic models, the requirement is defined as
the nutrient concentration resulting in the
maximum predicted response value. With quad-
ratic polynomials, the ascending portion is
curved, increasing at a decreasing rate until the

maximum is reached. There is a single maximum
point, not a plateau, and further increases in
nutrient concentration result in (predicted)
reduced performance levels.

Many authors consider the ascending por-
tion of the response and the plateau both to be
straight lines (the Broken-Line Linear Model,
or BI .1. Model). A straight line is usually
a reasonable approximation of the ascending
port ion, although it is never possible to tell if
there is a sharp break between the lines or
a smooth transition. The intersection of the
ascending line and the plateau gives an estimate
of the "requirement" , the nutrient level where
the response was maximised.

The ascending portion of the response is
sometimes considered to he curved in nature
with a smooth transition to the plateau. Almquist
1953) concluded from several experiments that

plotting the log of nutrient intake in the sub-
optimal region usually results in a straight line
response. The intersection of the ascending log-
close line and the plateau gives an estimate of the
''requirement''. In the 1950s, plotting data on
log-lined graph paper was an effective way to
discover the parameters for non-linear regres-
sion. Since the 1980s it has been more efficient
to fit polynomial or other curves with statisti-
cal software on computer. The Broken-Line
Quadratic Model (BLQ) has a second order
polynomial fhr the ascending region instead of
the straight line (first order polynomial) in the
BLL Model.

Fisher et at. (1973) presented a non-linear
model that fitted a sigmoid response to amino
acid intake for laying hens, the ''Reading Model''.
Another sigmoid model, the saturation kinetics
model, was shown to fit data from a wide variety
of nutritional responses for different species by
Morgan ci at. (1975). These sigmoid models have
two important differences from Almquist's
1953) log-intake model: first, the ascending

portion may be sigmoid instead of quadratic;
second, the maximum response is never attained,
but only asymptotically approached. Therefore,
with the sigmoid models, there is no clear
concept of the "requirement" for maximum
performance. Since the maximum response is
only approached and never attained, there is no
required amount of nutrient that yields the
maximum response.

The model of Fisher ci at. (1973) assumed
that individuals follow the broken-line linear
model with different values for the upper and
lower plateaus. Curnow (1973) demonstrated
that the response curve of a population of such
individuals would then have a sniooth response
curve: "The slope increases jrom 0 to a maximum,
<fi, and then back to 0 as X varies from —oc to +00"

( = value of the lower plateau). With example
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Table 1. Data used in the anal'se - The responses of broiler chicks to dietary protein and I sine concentrations from 9 to
18d of age'.

Trt 2 	Protein (g/kg)	 Lysine	 Burly weight gain	 Feed conversion

(g/kg diet)

1	 170	 50
2	 170	 60
3	 170	 70
4	 170	 80
5	 170	 9.0
6	 170	 100
7	 170	 110
8	 170	 12.0
9	 230	 7.0
10	 230	 8.0
II	 230	 9.0
12	 230	 100
13	 230	 110
1•1	 230	 120
IS	 230	 13.0
16	 230	 140

'Means ± SE of three pens (6 birds each at 7 d) per treatment.
2Treatmen,. number.

(g/kg protein)
	

g/9d Mean +SE
	

g feecl/g gain
Mean ± SE

294
	

1276 ± 80
	

265+012
35,3
	

1926± 128
	

226+007
112
	

2058+ 101
	

2-06+0-06
47.1
	

2286 ± 4.0
	

199 + 006
529
	

244$ ± 105
	

186 + 005
588
	

2195± 121
	

2 . 06 ± 0.11
647
	

2347 + 08
	

198±00!
706
	

241.7+13.2	 .85 + 1)09
30.4
	

1879 + 74
	

205 + 0(12
34.8
	

2222 ± 5.7
	

187±001
39.1
	

2702 + 149
	

167 + 007
43,5
	

2953±56
	

1.57+0.05
478
	

2846± 12!
	

158 + 003
522
	

2923±7!
	

1.50+0.03
565
	

3108±232
	

148±006
609
	

305 . 4 + 208
	

1 . 50+ 007

data from an experiment on the egg production
response to methionine intake, Curnow (1973)
pointed out: "In a simple economic model, the
optimum level of methionine would be the point at
which the slope of the response curve equaled the ratio
of the cost on an extra unit of methionine to the return
from an extra unit of egg production".

Animal feeding trials do not always result in
information in the very low (sigmoid), portion of
the response curve (Robbins et al., 1979).
Therefore, simpler models are usually adequate
to describe nutritional response data realistically.
Robbins et at. (1979) compared two non-linear
asymptotic curve models with the broken-line
model. They emphasised the problem with
asymptotic curve models: "If a curve which
approaches an asymptote is chosen, we confront
the task of choosing a definition for the estimated
'requirement'. . . . We have arbitrarily chosen the
dose at which the response reaches 0 . 95 times
the total response .....,iven this arbitrary choice,
the procedure is entirely objective".

The task of choosing a definition for the
estimated "requirement" was approached differ-
ently by Almquist (1952, 1954a). The "Law
of Diminishing Returns" was applied to feeding
trial response data by Almquist who had
moved from a university setting to a commercial
company. The law of diminishing returns had
to he interpreted economically. The best feed-
ing level for the nutrient in question is not
some "requirement" for maximum performance.
The best feeding level is the nutrient
concentration that maximises profits, calculated
from the cost of the inputs, shape of the
response curve, and value of the outputs.

Although a "requirement" is static, the profit
maximising concentration is dynamic, changing
whenever the cost of the nutrient or value of meat
or eggs changes.

Wilson (1977) compared several sigmoid
growth curves relating growth to the age of'
broilers, quail, turkeys and ducks. He pointed out
that "Any model of growth which is to he used to
answer commercial questions must therefore
allow for the food to be described in terms of
its quality as well as quantity". The sigmoid curve
for each combination of dietary ingredients
(quality) should he considered to properly max-
irnise profits. The exact models will not only he
functions of diet quality, ftec1 consumption and
genetics, but also functions of the environmental
conditions that the birds are kept in. Any factors
that affect feed consumption and growth rate
(such as genetics, temperature, humidity, pellet.-
ing and air flow velocity) will affect the response
curves to the various nutrients, and the feeding
levels that achieve maximum profitability.

The data used here to compare various
methods of estimating nutritional responses and
requirements were from a feeding trial conducted
with Cobb x Cobb broiler chicks raised in battery
brooders from 9 to 18 d of age (Experiment
1901kw; Table 1, Figure 3). The diets were based
on maize, maize gluten meal, poultry grease,
maize starch and cellulose to have exactly the
same alTIin() acid profiles with 170 and 230 g/kg
crude protein. Lysine concentrations were
obtained by adding i.-lysine to the diets. There
were three pens of 6 chicks for each combination
of protein and lysine concentration.
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ESTIMATING REQUIREMENTS WITI I
MULTIPLE RANGE TESTS

Separation of means using multiple range tests,
although misguided, assumes that it dietary
requirement has been met at the lowest concen-
tration of the nutrient that results in a response
that is not significantly different from the
maximum response (at some arbitrarily chosen
level of significance) Multiple range tests for
estimating nutritional requirements are usually
based on one-way analysis of variance. The Least
Squares Means (LSM) results were included in
these comparisons since they are sometimes used
to estimate nutrient requirements. LSM results
are often presented as if they were from
a multiple range test. However, the LSM proce-
dure of SAS (1990) gives pair-wise comparisons
of means using Student's /-test, and thus is not
a multiple range test per Se.

Determination of a nutritional requirement
by comparison of adjacent means is equivalent to
using it subset of the available data and discard-
ing the rest. Any regression based on a plausible
biological model of the expected nutrient—
response relationship over it broad range
should he preferable. Selected nutrient concen-
trations in the experiment may not have been
chosen in the proper range and a large propor-
tion of the work done will have been wasted even
under the best of circumstances.

Basing the concept of "requirement" on the
lack of a statistically significant response to an
increasing input means that the experimenter
cares most about that part of the response curve
where the statistical test is least sensitive,
a problem pointed out more than 50 years ago
(Almquist, 1 954b). The low power of the test and
the high likelihood of Type II error inevitably
tend to underestimate the requirement, as
pointed out by Shearer (2000), although the
underestimate may not he as severe in poultry
species, which have it long experimental history
compared with nlany other animals. The sources
and magnitudes of error in nutritional require-
ment experiments with poultry are better known
and easier to control. This should allow experi-
ments of appropriate power to be designed and
conducted. Use of multiple-range tests also
ignores advances in biological and statistical
models that have occurred since the early years
of experimentation in nutrition.

Multiple range tests, such as Scheffé's (1953)
are regarded as more conservative, or cautious,
than others. They do not declare means to he
significantly different unless there are larger
differences than with less cautious tests, like
Duncan's (1955). The more cautious a multiple
range test, the less likely it is to declare means
significantly different from the one giving the

niaxiiiium (or minimum) response, and the lower
the requirement estimate will he. The cautious,
or conservative, approach to feed formulation
and nutritional requirements is to provide higher
concentrations of each nutrient to be sure the
requirement is met and performance is max-
imised. Paradoxically, the choice of a more
conservative multiple range test leads to
a lower, less conservative requirement estimate.

The differences in requirement estimates
between multiple range tests (Tables 2 and 3) are
clue to the more cautious nature of some tests.
The cliflèrences in requirement for the different
performance measurements (growth vercu,s feed
conversion, Table 2 vs. 3) are expected. The
requirement for maximum growth is usually
lower than for maximum feed utilisation. Only
Scheffé's (1953) and the pair-wise comparison's
of the Least Squares Means procedure showed
differences in requirements for growth versus
feed conversion ratio. This is likely due to the
amount of replication in the data set and the
wide intervals in lysine concentrations that were
fed, as well as the inability of some tests to
discriminate between means.

The multiple range test results shown in
Tables 2 and 3 demonstrate the difficulty in using
simple mean comparisons to estimate require-
ments. Results from the least Squares Means test
seem inconsistent since they use variances from
each pair of means. The other tests pool
variances from all the data. It is questionable
whether data from both protein concentrations
should be used or should the data from each
protein concentration be analysed separately?
Researchers often pool such data assuming each
mean should have the same population variance
and only report a pooled standard for all the
means. Separate regression models are usually
predicted for each level of other variables, as in
Figure 1.

Advantages of multiple range tests

Multiple range tests are easy to implement in
software packages and seem relatively easy to
understand: The bird needs a certain amount of
nutrient to meet maximum response. There is no
estimate of the precision of the requirement's
estimate for authors to present that would
suggest doubt or controversy in their conclu-
sions. This is only an advantage for authors not
wanting it quantitative measure of confidence in
their results. Multiple range tests are fhmiliar to
most scientists working in applied fields. Recent
published research in the global poultry science
literature contain examples of papers using
multiple range tests to separate means of
growth responses to graded levels of dietary
Ii ut.ri CT) ts.
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Table 2. A comparison of several multiple range tests and Least Squares Means fir the body weight gain data in Table 1. Means
without common superscripts are dfjerent at P<005.

Treatment	 Mean	 n	 Bonferroni'	 Duncan2	 REGW7	 Scheffé'	 SNK5	 Tukev5	 Wailer'	 LSMM

15	 3108	 3	 A
16	 3054	 3	 A
12	 2953	 3	 AB
14	 2924	 3	 AB
13	 2846	 3	 ABC
11	 2702	 3	 ABCD
5	 244.8	 3	 BCDE
8	 2417	 3	 BCDEF
7	 2347	 3	 CDEF
4	 228.6	 3	 DEE
10	 2222	 3	 DEF
6	 219.5	 3	 DEF
3	 2058	 3	 EF
2	 192.6	 3	 EF
9	 1880	 3	 F
1	 127.6	 3	 G
Requirement	 230 g/kg	 >	 8g/kg

Protein	 <	 9 g/kg

'Bonferroni (Miller, 1981).
2Duncan (1955).
'REGW (Welsch, 1977).
4Scheff6 (1953).
'SNK, Student-Newman-Keuls (Miller, 1981).
5Tukey (Hayter, 1984).
7Waller (Wailer and Duncan, 1969).
8LSM, Least Squares Means (SAS, 2005).

Table 3. A comparison of several multiple range tests and Least Squares Means for feed conversion ratio data in Table 1. Means
without common superscripts are different at P<0.05.

Treatment	 Mean	 n	 Bonferroni'	 Duncan2	 REGW3	 Scheff64	 SNK5	 Tukey5	 Wailer'	 LSM8

15	 265	 3	 A
16	 2.26	 3	 B
12	 206	 3	 BC
14	 206	 3	 BC
13	 205	 3	 BC
11	 199	 3	 BC
5	 198	 3	 BC
8	 187	 3	 CD
7	 1.86	 3	 CDE
4	 185	 3	 CDE
10	 1.67	 3	 DEF
6	 158	 3	 DEF
3	 157	 3	 EF
2	 150	 3	 F
9	 150	 3	 F
1	 1.48	 3	 F
Requirement	 230 g/kg	 >	 8g/kg

Protein	 <	 9g/kg

'Bonferroni (Miller, 1981).
tDuncan (1955).
REGW (Welsch, 1977).

4Scheff6 (1953).
'SNK, Student-Newman-Keuls (Miller, 1981).

5Tukey (Hayter, 1984).
7Waller (Wailer and Duncan, 1969).
5LSM, Least Squares Means (SAS, 2005).
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Disadvantages of multiple range tests

With multiple range tests, the actual requirement
can only be on or between two levels of the
nutrient that were fed, and there is no way to tell
precisely what it is (Figure 2). Scientists who are

familiar with multiple range tests are often
unfamiliar with the controversial history of such
procedures and the large numbers of statisticians
who have warned of the dangers of indiscrimi-
nate use. Many papers investigating nutritional
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Figure 2. Data from an experiment to determine the
lysine requirements of broiler chicks from 9 to 18d of age
with the results of Duncan s New Multiple Range Test. The
arrows indicate the best estimate of the "requirement".

requirements of poultry are based on experi-
mental designs, often factorial, that employ
graded levels of nutrients. Statisticians and
concerned scientists have warned repeatedly
against using multiple range tests in factorial
arrangements or in experiments that could be
analysed with some form of regression (Gill,
1973; Chew, 1976; Petersen, 1977; Little, 1978;
Baker, 1980; Carmer and Walker, 1982; Dawkins,
1983; Nelson and Rawlings, 1983; Maindonald
and Cox, 1984; Swallow, 1984; Gilligan, 1986;
Perry, 1986; Cousens, 1988; Gates, 1991; Mihail
and Niblack, 1991; Lowry, 1992; Pearce, 1993;
Shearer, 2000). Many of the cited papers mention
published examples where use of multiple
comparisons either obscured the correct inter-
pretation or led to a wrong interpretation.
Results from multiple range tests are also
dependent on the experimenter's arbitrary adop-
tion of a level of significance.

ESTIMATING REQUIREMENTS WITH
SECOND ORDER POLYNOMIALS

Fitting polynomials to nutrient response data is
based on the assumption that there is some level
of input that results in maximum performance,
the requirement. The GLM Procedure of
SASv9 . 1 (2005) using the ordinary least squares
method was used to fit the second order
polynomial models. In the example data set,
maximum body weight gains were reached at
10 . 3 and 12•5 g/kg dietary lysine, for the 170 and
230 g/kg protein diets, respectively (Figure 3).
Nutritionists sometimes choose to set "require-
ments" at some input value other than 100% of
the maximum response, as they may do with
asymptotic models. Requirement estimates for
90, 95 and 99% of the maximum are included in

Figure 3. The second-order polynomial response model for
the relationship between dietary lysine and broiler growth.

Table 7 for comparison to the asymptotic
models.

Second-order polynomials describe relation-
ships called "diminishing marginal productivity".
The contributions to output from each successive
unit of input are diminished until the maximum
is reached. With a second order polynomial,
adding units of input above the requirement is
expected to actually decrease the response.

Advantages of second-order polynomials

The classical concept of "requirement" is clearly
(if not accurately) defined as the nutrient
concentration resulting in the maximum pre-
dicted response. Polynomial models are easy to
fit to data (only three input levels are needed for
quadratic responses, but three is not nearly
enough points for the curve to be used to
estimate the shape of the response or
a requirement with any confidence). Strictly
speaking three points are enough to determine
the coefficients of a quadratic. More points are
required to determine whether the shape devi-
ates from a quadratic and replication is required
to indicate the precision of estimated coeffi-
cients. Maximum performance levels (or mini-
mums for criteria such as feed conversion ratio),
are easy to determine (by setting the first
derivative equal to 0 and solving for x).
Nutritional responses from low to high dietary
concentrations exhibit an increase as deficiency
is overcome, a plateau when the body is in a state
of dynamic equilibrium and a decrease in
performance when toxicity is reached. A second
order, or quadratic, polynomial can fit the
increase and decrease in performance well, but
not the plateau. For instance, for the polynomial:

y = h0 + hL +bL2	 (1)

where y is the dependent variable, L is the dietary
lysine concentration, and b0, b1 and b2 are
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Figure 4. The broken-line with linear ascending portion model for the relationship between dietary lysine and broiler growth.

constants, the increase and decrease in response
can be represented well if b 1 is positive and b2 is
negative.

Disadvantages of second-order polynomials

Most nutritional responses are believed to have
a plateau or "safe" levels of inputs between the
requirement for maximum response level and
levels that are toxic. Second order polynomials
are not able to characterise such data at all. The
inclusion of data from inputs below or above
those required for the maximum response have
a larger effect on predictions near maximal
responses than when using other models. That
is, adding additional input levels at higher or
lower levels changes the requirement estimate.
Logically, adding extra input levels far from the
requirement should not influence the
"requirement" (input at maximum response),
but with this model it does.

ESTIMATING REQUIREMENTS WITH
BROKEN LINE OR SPLINE MODELS

The most commonly applied model to nutri-
tional response experiments is the broken line
model with the ascending line a linear function
of dietary nutrient concentration (Figure 4). The
broken line nutritional response models are
a subset of spline models where the slope of
one line is equal to 0. Broken line models assume
that as concentrations of a nutrient are increased

in the diet, there is a change in response up to
some point, the requirement, where the max-
imum (or minimum) response is reached. There
is some plateau level above the requirement
where the nutrient is neither helpful, nor toxic.
The requirement is the x value of the point
common to both lines.

y = b() + bx, if x requirement y = maximum
(or minimum), if x requirement

(2)

The broken line with ascending quadratic line
model is similar and may fit some nutritional data
better (Figure 5).

Y = b0 + bx + bx2,

if x requirement y = maximum	 (3)

(or minimum), if x requirement

The broken line with ascending quadratic line
models diminishing marginal productivity until
the level of the requirement is reached. After the
level of the requirement, there are no further
increases (or decreases) in response, marginal
productivity is 0.

The NUN Procedure of SASv9 . 1 (2005)
using Marquardt's Method, was used to fit all
non-linear models. The technique is iterative and
requires good initial parameter estimates to give
accurate requirement and other parameter esti-
mates. The resulting parameter estimates include
estimates of confidence in the requirement,
maximum response, and rate constant (RC).
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Figure 6. Three non-linear models for the relationship
between dietary lysine and broiler growth of chicks fed
230P /kg protein.

Advantages of broken-line models

The broken line models more closely represent
theoretical ideas of the nature of nutritional
responses than multiple range tests or polyno-
mial models. The classical concept of
"requirement" is clearly defined as the nutrient
input level resulting in maximum response for
variables like growth, or a minimum for variables
like carcase fat. The standard error of the
requirement estimate is a measure of how good
a particular experiment is. A small standard error
of the requirement indicates that replication was
adequate, but a large standard error of the
requirement indicates that replication was not
adequate considering the inherent variation in
response.

Disadvantages of broken-line models

More levels of nutrient input are needed to get
good estimates of the ascending and maximum
response segments than with a quadratic poly-
nomial. Broken line and other non-linear models
are more difficult to fit than simple polynomials.
The iterative techniques for fitting non-linear
models do not always find the global minimum
sum of squares and sometimes fail altogether to
converge on a minimum. On the other hand,
ordinary least squares methods fit polynomials to
data very well as long as there are enough points.

The broken line with ascending quadratic
portion is usually harder to fit to data than the
broken line with ascending linear portion model,
and the standard error of the requirement is
usually larger for the broken line with ascending
quadratic portion. In contrast to the quadratic
polynomial, the broken line models fit the
ascending and plateau portions well but have
no feature or parameter to fit any decreasing (or
toxic level) responses. There is no feature of the
models for distinguishing concentrations of the
nutrient that are toxic; some method should be

employed to eliminate higher nutrient concen-
trations that may be causing sub-maximal
responses, so that those levels can be eliminated
from the analyses, or more appropriate models
can be found.

ESTIMATING REQUIREMENTS WITH
OTHER NON-LINEAR MODELS

Excellent reviews on the applicability of non-
linear curves to animal growth and nutritional
response curves have been written by Almquist
(1953), Curnow (1973), Wilson (1977), Robbins
et al. (1979), Fisher (1980), Mercer et at. (1978),
Mercer (1982, 1992) and Gab] et at. (1991). A very
large number of non-linear models have been
fitted to nutritional response data. The three
models compared here, the saturation kinetics
model, a compartmental and a logistics model,
are typical of the various non-linear models that
may be used (Figure 6):

Compartmental model:

Y = ae b°o)* (1 - e e(x_d)))	 (4)

Logistic model:

y = a/(1 + ((a - b)/b)*e(_t) 	 (5)

where y is the response (growth, feed efficiency,
etc.) a to c are constants, x is the dietary nutrient
concentration and e is the base of natural
logarithms,

Saturation kinetics model:

(b*c + aX')

Y= (c+X")	
(6)

where y is the response (growth, feed efficiency,
etc.), b is the intercept, a is the theoretical
maximum, c is the nutrient rate constant, and
d is the kinetic order of the response when x =0.
Many such models fit nutritional response data
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Table 4. A comparison of several modeiv abthlv to fit nutritional response data using the Coefficient of Determination (R2,
Equation 8) and sums oJ the residuaic squared (Resid. = Observed-Predicted (Py, Equation. 9) fin- birds receiving 230 g/kg protein.

Model	 R2 value

All observations

R2 	 Adjusted R

Second-order polynomial	 08172	 0.7898
Linear broken line	 0.8349	 0-8274
Quadratic broken line	 08303	 08141
Saturation kinetics 	 08384	 0-8142
Compartmental	 0.8357	 0-8110
Logistic	 08376	 0-8222

All observations = l.v.sinc values: 7, 8, 9, 10, II, 12, IS, and 14g/kg.
Transition I = Lysine values: 7, 8, 9, 10, II, and 12 g/kg.
Transition 2 = 1,vsine values: 9, 10, 11. 	 12 g/kg.

well and it is difficult to choose a model that fits
all nutritional response data better than others.
The best rationalisation may he made for using
the saturation kinetics model.

The saturation kinetics model is a superset of
the Michaelis-Menten model for describing the
velocity of enzymc-catalysed reactions (Michaelis
and Menten, 1913).

= (V,[S])	
(7)

(Km +[S])

where v is the velocity of the reaction, V is the
theoretical maximum velocity, [S] is the concen-
tration of the substrate, Km = [S] at half the
maximum velocity.

In nutritional response experiments it may
be theorised that one such enzyme-catalysed
reaction (involving the nutrient in question) is
limiting the growth and performance of each
animal or bird. Nutritional responses should
therefore follow Michaelis-Menten kinetics.
Michaelis-Menten kinetics do not allow for an
intercept different from 0, or for the kinetic
order of the response 10 be different from 1; the
saturation kinetics model has added features to
include an intercept and different kinetic orders.
Many, but certainly not all, non-linear models are
asymptotic, approaching a maximum response,
but never reaching it, and the concept of
nutrients being toxic at high concentrations is
not part of the models.

Accuracy of fitting non-linear models

The NUN Procedure of SASv9 1 (2005) using
Marquardt's Method, was used to fit all non-
linear models. The technique is iterative and
requires good initial parameter estimates to give
accurate requirement and other parameter esti-
mates. The resulting parameter estimates include
estimates of confidence in the requirement,
maximum response, and rate constant (RC).

Sum residuals squared

All observations	 Transition I	 Transition 2

8063	 4068	 3796
7281	 2697	 2432
7487	 2975	 2504
7129	 2846	 2541
7249	 3222	 2870
7162	 3100	 2785

Advantages of other non-linear models

The non-linear models more accurately depict
biological responses than models that force
responses to conform to straight lines.

Disadvantages of other non-linear models

The concept of-requirements" is not defined at
all. More levels of nutrient input are needed to
get good estimates of the ascending segment and
maximum response than with polynomials. Non-
linear models are more difficult to fit than simple
polynomials. There is no feature of the models
for distinguishing concentrations of the nutrient
that are toxic; some method should he employed
to eliminate higher nutrient concentrations that
may he causing sub-maximal responses SO that
those levels can be eliminated from the analyses.

STATISTICAL COMPARISON OF
NUTRITIONAL RESPONSE MODELS

There is no simple answer to the question,
"Which model is best for estimating nutritional
requirements?" These regression models can be
compared by cosiderin the coefficient of
determination stati

n
stics (It). For a given model

this statistic is:

(8)
-

where V1 is the ith observed value, ki is the ith
predicted value i = I,..., n. and V is the mean of
the observations. It can he shown that R2 lies
between 0 and 1, with higher values of j?
representing better fits. The data value of R2 is
shown in column 2 in Table 4, for the respective
models. The F-tests (see, e.g., Draper and Smith,
1966, Equation 2 . 611, pp. 62-64) for all models
give P<0 . 0001, hence we conclude that each
model is a statistically significant model.
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Based oil results, it is clear that the
second-order polynomial model is the least well
fitting of these 6 models, and the Saturation
Kinetics model is the best both when all observa-
tions are compared and when only the transition
set are compared. When considering the whole
set of observations, the logistic and compart-
mental models are also very good, followed by
the two broken-line models.

It is possible to make an adjustment to the R2

values in Table 4 to account for differences in the
number of parameters in the models by dividing
the numerator in the ratio part of [8] by ( 17 —)

and dividing the denominator by (n - 1), where ii
is the number of observations and p is the
number of parameters. When this is (lone the
second-order pol ynomial is still clearly the least
adequate fit to this data. The superiority of time
other models is therefore not due solely to their
larger number of parameters.

Another way to compare the six models is to
look at the overall sum of squared residuals.
In each case:

R 1, =	 (O — E>) 2	(9)

All the models have residuals, the observed
minus the predicted values, except the multiple
range tests. The model with the lowest sum of
squared residuals is the best overall fit to the
data. The sum of squared residuals for all
observations are displayed in column 4 of
Table 4. As for the R comparisons, the second-
order polynomial model separates itself out as
having the worst fit of these models, since it has
the largest sum of squared residuals value. The
sum of squared residuals is a linear function of
the R2 values, so the order of fit is exactly the
same. In reality, for these data there is not much
to distinguish these models from each other
(apart from the second-order polynomial model).

These comparisons look quite appropriately
at all the data across all l ysine concentrations.
However, given the importance of the region
around the transition from ascending to plateau
portion of the response, it is interesting to
compare these fits for the middle six
(Transition Model 1) or middle 4 (Transition
Model 2) lysine concentrations that surround this
critical transition (Table 4). The plot of the
residuals against dietary lysine concentrations
(Figure 7) illustrates that the two broken-line and
saturation kinetics models have the smallest
residuals at the most important lysine concentra-
tions (where the response is in transition from
ascending to plateau phases).

For all lysine concentrations and the
Transition Models 1 and 2, the sum of squared
residuals obtained from Equation (9) are shown

Broken Urre
- Linear
Broken Line
- Quadratic

--Sacuration Kinetics

—: - Compartmental

Logistic

Quadratic

-15-0 -

-20-0
6-0	 80	 100	 12-0	 14-0

Lysine Loud (g/kg Diet)

Figure 7. Comparison of the average residuals for six
non-linear models for the relationship between dietan , lysine
and broiler growth.

in columns 4, 5 and 6 of"Fable 4. An immediate
observation is the big reduction in the sum of
squared residuals for the respective models.
In fact most of this is clue to the absence of the
values of the two highest lysine levels. It. is clear
(see Figure 7) that the observed values for these
two cases have high variances, and they account
for more than half of the sum of squared
residuals of column 4 of Table 5. In that sense
the comparisons are distorted.

For both the coefficient of determination
and sum of squared residuals criteria, the linear
broken line and quadratic broken line models
provide the best fit to the Transition Model 1
data. For Transition Model 2, the linear broken
line and saturation kinetics models provide the
best fits, emphasising how important choosing
nutrient input levels may be to estimating the
best fit models and nutritional ''requirements''.
Again, the second-order polynomial model gives
the worst fit by a large margin compared to the
other five models.

There is, for all cases, no model that call
declared clearly superior to the others from
a statistical perspective. Each experiment should
be evaluated based on the observed results and
which model best fits the particular observed
data, and the researchers goals iii designing the
experiment.

ECONOMIC INTERPRETATIONS OF
NUTRITIONAL RESPONSE DATA

From the economic perspective, the choice of the
optimal feeding level can he cast as the solution
of'a profit-maximisation problem. Where max 7r

represents the maximum profit obtainable.
In the most general form, such a problem can
he stated as

mnaxjr(x)=psy—w.x—c s . t'v=f(x) (10)
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Table 5. Economic interpretation of nutritional response data. It was assumed that the basal feed containing 7g./kg lysine costs
£0 . 141kg, 1.-lsine costs £1551kg and broilers were valned at £1.001k9.

Dietary lysine	 Feed intake	 Feed cost	 Body weight gain	 Revenue	 Profit	 Marginal profit

g/kg	 g/hird	 £/I000kg	 £/1000 birds	 g./bird
	

£/ 1()00 hirct	 i/1000 birds	 U 1000 birds

7-0	 384-34	 14000	 53-81
7-2	 386-22	 140.31	 54-19
74	 389-71	 140-62	 54-80
7-6	 395.61	 140.93	 55.75
7-8	 404-43	 141-24	 57.12
8-0	 415.52	 141-55	 58-82
8-2	 426.95	 141.80	 60-57
8-4	 436-64	 142-17	 62.08
8-6	 443-64	 142-48	 63-21
8-8	 448-17	 112-79	 63-99
9-0	 450-90	 143-10	 64-52
9-2	 45250	 143-41	 64-89
9-4	 453-42	 143-72	 65-17
9-6	 453-95	 144-03	 65-38
9-8	 454.26	 144-34	 65-57
10-0	 45443	 144-65	 65-73
10-2	 454-54	 144-96	 65-89
10-4	 454-60	 145-27	 66-04
10-6	 454-63	 145-58	 66.19
10-8	 454-66	 145-89	 66-33
11 _0	 454-67	 146-20	 66-17
11-2	 454-68	 146-51	 66-61
11-4	 454-68	 146-82	 66-76
11-6	 454-68	 147-13	 66-90
11-8	 454-69	 147-44	 67-04
12-0	 454-69	 147-75	 67-18
12-2	 454-69	 148-06	 67-32
12-4	 454-69	 148-37	 67-46
12-6	 454-69	 148-68	 67-60
12-8	 454-69	 148-99	 67-74
13-0	 454-69	 149-30	 67-89
13-2	 454-69	 149-61	 68-03
13-4	 454-69	 149-92	 68-17
13-6	 454-69	 150-23	 68-31
13-8	 454-69	 150-54	 68-45
14-0	 454-69	 150-85	 68-59

where y is the level of output, x is the input
required to produce y , p is the price of Output,
w is the price of input, J(.) is the input
transformation (or production) function, and c
are other costs associated with producing output
y (Mas-Colell ci at., 1995; Varian, 1992) solution
to the problem requires taking the first derivative
of the profit function. The optimal feeding level
is then found by equating the derivative to 0.

In general, the price of output p and
production cost c may depend on the level of
produced output, while the cost of input may
depend on the quantity of the purchased input.
However, under certain circumstances, these
variables can be assumed constant. For instance,
if chicks are produced under contract, the per-
unit price of output may be fixed in advance
regardless of the quantity produced. In the same
way, the per-unit price of input can be fixed
either by a contract or through advanced pur-
chase. If this is the case, the solution to the profit
maximisation problem simplifies somewhat, and

the optimal feeding level can be found from the
condition

	

Pf'(x)=IV,	 (11)

which can be interpreted as marginal revenue
from an additional unit of input used is equal to
the marginal cost of that additional unit. If the
amount of input is constrained between x0111 and

then condition (11) is slightly modified to

pJ'(x) - w = 0 if x 1 <x <x5,
pf'(x) - W <0 if X = Xmin

	

pf'(x) - w> 0 if x =	 (12)

If the broken-line linear model is used, the
economic interpretation of the data is very
simple. Below the maximum, the derivative of
the production function f(x) is equal to the
constant h 1 (Equation (3)), i.e. each additional
unit of input results in the same additional
output, up to the maximum. When the maximum
level of output is reached, there is no further
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Figure 8. The marginal technical efficiency (A Bod y Weight Gain/A Lsine int(,tke) of dietary lysine as expected from the
saturation kinetics model in Figure 6.

increase in output in response to additional units
of input, i.e. J'(x) = 0. Thus, unless the marginal
revenue pb l is exactly equal to the marginal cost
of input to, it must be cost effective to either feed
at the basal level x,,, 1 , or at the requirement. level

never at an intermediate level.
II the broken line with ascending quadratic

model is used, then the nutritionist can use
either: (1) a profit maximisation approach to find
the most economical feeding level, or (2) feed at
the break point, or ''requirement''.

With response models such as the satura-
tion kinetics, Reading or exponential, there is
no technical ''requirement' level for feeding.
However, the profit maximisation approach
can still he applied to decide on the most
economical concentration of each nutrient
to feed. Equal amounts of additional input now
result in different amounts of additional output,
i.e. the derivative J'(x) of the production function
is no longer constant. Typically, the marginal
revenue pf(x) is greater than the marginal cost w at
lower levels of input, i.e. marginal profit
is positive. However, the additional output zpro-
duced in response to each additional unit of
input decreases as overall input
concentrations increase. The technical relation-
ship between dietary lysine concentration and the

marginal efficiencyof lysine utilisation (A body
weight gain/A lysine consumption; Figure 8)
illustrates that, as l ysine concentration
increases, the marginal efficiency approaches 0.
From the economic perspective this implies that
the marginal revenue decreases and appro-
aches marginal cost, i.e. the marginal profit
approaches 0.

For the example in Table 5, the body, weight
and feed consumption data for the chick's
response to lysine concentration have been
predicted by the saturation kinetics model
(Figure 9). It was assumed that the basal feed
containing 7,q/kg lysine costs £0 . 14/kg, j--lysine
costs Y-1-55/kg, and broilers were valued at
£1.00/kg.

When any model is applied, the point of
maximum profits can be predicted from the
technical (response equation) relationship and
the costs and values of the inputs and outputs
(Table 5). In this example, 12-4 g//kg lysine
maximised profit over quantities of input.
The marginal profit column was included in
Table 5 to show how the contributions to profit
diminish as lysine is added to the diet, and
illustrate that profits are maximised when mar-
ginal profit become equal to 0.

'Mathematically speaking. this requires that tIn production 'unction /1 s-f is concave. i.e. its second derivative 1(x) is negative. This condition is satisfied for the
broken line linear and quadratic ascending segments non-linear models for sufficiently high levels of inputs X.
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The basic shape of the marginal revenues
curve (Figure 10) is the same as the marginal
technical efficiency curve (Figure 8). Maximum
profits are achieved when marginal costs and
marginal revenues are equal, i.e. the curves
intersect. If marginal cost is less than the
marginal revenue, additional profit. can be
generated h increasing input level. On the
other hand, if marginal costs are greater than
marginal revenues, then money is lost
unnecessarily.

Note that the economic model discussed
above is very simple and in practice models
should include more than feed costs. However,
the basic principles illustrated here also apply
to more complex models that include inputs such
as housing and labour costs. Practical models
should be based on producing a bird of a certain
market weight, not age as in the example
experiment.

Note also that 12-4g/kg should not be
interpreted as the lysine "requirement". If the
cost of lysine or value of broilers were to change,
the concentration of lysine to maxirnise profits
would also change (Table 6). Consistently with
economic theory, all things being equal, if the
value of the output (broilers) increases, then
the level of production should increase, and the
amount of lysine fed should increase. But if the

cost of the input (lysine) increases, then the use
of the input should decrease and the production
level decreases as well.

HOW SHOULD THE NUTRIENTS
(INDEPENDENT VARIABLES) BE

EXPRESSED?

It is most difficult to compile technical and
economic models with a large number of mean-
ingful inputs. A common simplification that has
been made is to express the amino acid require-
merits in relation to one amino acid or all amino
acids (dietary crude protein or nitrogen x 6-25).
Almquist (1952), Boorman and Burgess (1986)
and Baker and Han (1994) have written excellent
reviews on this subject..

If' the dietary lysine content is expressed as
the concentration relative to the dietary protein
concentration instead of relative to the diet, then
the lysine by protein interaction is no longer
significantly different from 0 (Figure 11). Neither
is there a difference in lysine requirements when
different protein concentrations arefed. The
formulating nutritionist must decide on the best
way to express nutritional requirements as well as
the important nutrients to model from an
economic perspective to truly maximise profits.
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Figure 10. The marginal costs and revenue from feedtng
several concentrations of 1sine to broiler chicks. The data
were Predicted b the saturation kinetics models of Figure 6.

For commercial applications, more complex
models with multiple nutritional inputs may
prove advantageous. Performance may be
improved by adding one amino acid to a diet,
or by adding a mixture of amino acids from
practical feed ingredients (protein). A model
depicting the substitution of amino acids from
crystalline or intact protein sources demon-
strated the value of considering multiple factors
when attempting to maximise profits (Sterling
el at., 2005).

THE REQUIREMENT DILEMMA

The value of any requirement or response
estimate depends on a number of factors: the
inherent experimental variation from genetic
and environmental sources, the amount of
replication and experimental design factors
such as the concentrations of the nutrient in
question. There may also he complicating factors
in a fictorial arrangement in experiments, such
as protein concentrations, exogenous enzyme
supplementation or different bird genotypes.
Statistical models should facilitate understanding
the answers to questions on appropriate feeding
levels.

The choice of a statistical model is
critical to interpreting nutritional requirement
experiments (Table 7). The example data
(Table 1) were not chosen because the different
interpretations were particularly exaggerated,
yet large differences in lysine "requirements"
were observed: The use of a "cautious" or
conservative" multiple-range test could justify

feeding no more than 9g/kg lvsine to
maximise growth, compared to 10-9±0•2, 128
and 13-2 g,/kg for the ascending quadratic with
plateau, logistics and saturation kinetics models,

Table 6. The inilueme a! Jeed cost and broiler value on the
1'5 szne concentrations (g/kg diet) that maxim/se pn?J its- uing the
saturation kinetics models of Figures 6 oral 9 with 230g/kg

crude protein.

Lysine (E/kg)	 Broiler value (i/kg)

0-40	 056	 0-70

0-6	 tO-I	 tOO	 10-8
-2	 9-8	 10-0	 [ft-I

1-8	 9-4	 9-8	 tOO
2-4	 90	 9-4	 9-8

respectively (with inexpensive lysine and high
broiler values).

Nutritionists intuitively know (assume) that
there is some concentration of each nutrient that
maximises performance (for each genetic stock
under each set of each set of environmental
conditions). They also know intuitivel y that there
is some concentration of each nutrient that will
result in toxicity and decrease performance.
Orthogonal contrasts and multiple range tests
seem appropriate for asking the question ''Will
an additional unit of nutiient significantly
improve performance (given the constraints of
what is known al)out the variation in ingredients
and accuracy of weighing ingredients for feed
mixing)?" The broken-line models seem appro-
priate for answering the question: ''What is the
nutritional requirement for maximum perfor-
mance?" And the models with ascending curves
seem appropriate for answering the question:
"What is the shape of the response curve to
graded concentrations of a nutrient (up to the
point when it becomes 'safe' or toxic?''

The broken-line models have the advantages
of fitting the data well and having a clear
definition of what the requirement is. The
broken-line with ascending quadratic model
would seem to be a good compromise for most
responses. It clearly defines the requirement. It
depicts diminishing- marginal productivity as
would be expected from the theory that nutri-
tional responses should follow enzyme kinetics. It
gives a cautious estimate of nutritional require-
ments, always higher than multiple range tests or
the broken-line with ascending linear model.
Unfortunately, in our experience it is the most
difficult to fit statistically. In general, with
contemporatycomputational power, statistical
fitting is now much easier and not the limiting
ftctor that it once was.

Biological systems rarely work in perfectly
linear fashions, so the non-linear models are
more intuitive for careful observers of scientific
data than models with linear functions. If
the interpreter believes that biological responses
should approach the maximum response in
an asymptotic fashion, then one of the other
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- - -230 g/kg Crude Protein (CP) Equation: - -
If X:!^Requirement,

Y=297.79.46*(42.28X)
Otherwise, Y=2977

Requirement:	 0	 0
2•3±i6 /kg cP(9 . 7g/kdjet)	 C

0
C

/	 0

gIkg Crude Protein (CP)Equat ion:
If X:5Requirement,

Otherwise, Y=2339a	 Requirement:
+	 441 ± 1•8 ci/ka (75 alka diet)

25	 30	 35	 40	 45	 50	 55	 60	 65	 70
Lysine Level (g/kg Crude Protein)

Figure 11. The broken-line with linear ascending portion model for the relationship between dietary lysine and broiler growth when
lysine concentration is expressed as a function of dietary protein concentration.

Table 7. The influence of statistical method used on the lysine concentrations (g/kg of diet) that satisfy "nutritional requirements "for
growth with 230g/kg crude protein.

Multiple Range Tests (between the highest level different from the maximum and the lowest level not different from thethe maximum,P< 0.05)

Logistics Model

Compartmental Model

Bonferronj
Duncan
Ryan-Einot-GabrielWelsch
Scheffé
Student-Newman-Keuls
Tukey
Waller
Least Squares Means

0.99 times the asymptote
0 . 95 times the asymptote
0 . 90 times the asymptote
Lys = £0 . 6/kg, Broilers = £0.40/kg
Lys =0 . 6/kg, Broilers =0.7/kg
Lys = £2 .4/kg, Broilers = £0.40/kg
Lys = £2 . 4/kg, Broilers =i0-70/kg

0 . 99 times the asymptote
095 times the asymptote
090 times the asymptote

099 times the maximum
095 times the maximum
0 . 90 times the maximum

>8, <9g/kg
>9, <lOg/kg
>8, <9g/kg
>8, <9g/kg
>8, <9g/kg
>8, <9g/kg
>9, <10g,/kg
>9, <10g/kg

12.6 9/kg
11 . 8 g/kg
106 g/ kg
9 . 8 g/kg

97+04g/kg
10 . 9 ± 02 g/kg

11 . 0 g/kg
97g/kg
9 . 1 g/kg
10 .4 g/kg
10 . 8 g/kg
9 . 0 g/kg
9.8g/kg

128 g//kg
10 . 5 g/kg
9 . 5 g/kg

125 g//kg
10 . 6 g/kg
9 . 6 g/kg

Quadratic polynomial
Maximum
0 . 99 times the maximum
095 times the maximum
090 times the maximum

Broken Line (Spline) Models (Mean + SE)
Linear Ascending
Quadratic Ascending

Saturation Kinetics Model
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non-linear, exponential models may be pre-
ferred. Regardless of the model chosen, the
economic ramifications should be considered
for practical feed formulation (Lerman and
Bie, 1975).
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